Search results for "Cloud albedo"

showing 5 items of 5 documents

Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

2008

Abstract. Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength) spectral range whi…

Atmospheric Science010504 meteorology & atmospheric sciencesIce crystals01 natural sciencesPhysics::Geophysics010309 opticsArctic13. Climate actionPhase (matter)0103 physical sciencesCloud albedoSpectral slopeRadiative transferEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsSea ice concentrationAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesRemote sensingOptical properties of water and iceAtmospheric Chemistry and Physics
researchProduct

Sensitivity of UVER enhancement to broken liquid water clouds: A Monte Carlo approach

2016

The study uses a Monte Carlo radiative transfer model to examine the sensitivity of the UV erythemal radiation (UVER) enhancement to broken liquid water clouds of the cumulus and stratocumulus type. The model uses monochromatic radiation at 310 nm corresponding approximately to the peak of the product between irradiance and the erythemal curve. All scattering, absorption, extinction coefficients, and spectral albedos are tuned to this wavelength. In order of importance, fractional cloud cover, the area of individual cloud patches, and cloud thickness exert a strong influence on the enhancement, with smaller contributions from cloud optical depth, cloud base height, and solar zenith angle. I…

PhysicsAtmospheric Science010504 meteorology & atmospheric sciencesCloud coverMonte Carlo methodIrradianceSolar zenith angle010502 geochemistry & geophysics01 natural sciencesGeophysicsAtmospheric radiative transfer codesSpace and Planetary ScienceExtinction (optical mineralogy)Cloud albedoCloud heightEarth and Planetary Sciences (miscellaneous)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesRemote sensingJournal of Geophysical Research: Atmospheres
researchProduct

2014

Abstract. This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol–cloud feedbacks with a focus on warm clouds. Both prognostic schemes (STN and HYB) account for aerosol number, size and composition effects on droplet nucleation, and are tested in combination with two different cloud cover parameteriz…

TroposphereConvectionFogMeteorologyLiquid water contentChemistryCloud coverCloud albedoRadiative transferAtmospheric sciencesAerosolAtmospheric Chemistry and Physics Discussions
researchProduct

Effective cloud optical depth for overcast conditions determined with a UV radiometers

2014

Using a sky camera, episodes characterized by overcast low clouds in the Valencia region of Spain have been selected for analysis. One year of cloud optical depth data have been produced by inverting UV erythemal irradiance measured with a UVB-1 radiometer from Yankee Environmental Systems using the LibRadtran radiative transfer model. Measurement uncertainties, aerosol single scattering albedo and cloud properties are, in order of decreasing importance, the most important factors influencing the accuracy of cloud optical depth retrieval when using UV erythemal radiometers. Statistics for cloud optical depth show a highly skewed frequency distribution best described by a gamma distribution …

Atmospheric ScienceRadiometerSingle-scattering albedomedia_common.quotation_subjectIrradianceAtmospheric sciencesAerosolAtmospheric radiative transfer codesOvercastSkyCloud albedoEnvironmental sciencemedia_commonRemote sensingInternational Journal of Climatology
researchProduct

Microphysical and radiative characterization of a subvisible midlevel Arctic ice cluod by airborne observations - a case study

2009

During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed south of Svalbard at around 3 km altitude. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in situ instruments. Collocated airborne lidar remote sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in situ sensors roughly 30 min later. <br><br> …

Atmospheric Science010504 meteorology & atmospheric sciencesASTARArktische GrenzschichtMischphasenwolken[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/MeteorologyAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesRadiative transferPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesRemote sensing[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]geographyIce cloudLidargeography.geographical_feature_categoryIce crystalsNephelometerCloud topArctic ice packlcsh:QC1-999Lidarlcsh:QD1-99913. Climate actionCloud albedoEnvironmental scienceAstrophysics::Earth and Planetary Astrophysicslcsh:PhysicsWolkenphysik und Verkehrsmeteorologie
researchProduct